341 research outputs found

    Relationship between gene co-expression and probe localization on microarray slides

    Get PDF
    BACKGROUND: Microarray technology allows simultaneous measurement of thousands of genes in a single experiment. This is a potentially useful tool for evaluating co-expression of genes and extraction of useful functional and chromosomal structural information about genes. RESULTS: In this work we studied the association between the co-expression of genes, their location on the chromosome and their location on the microarray slides by analyzing a number of eukaryotic expression datasets, derived from the S. cerevisiae, C. elegans, and D. melanogaster. We find that in several different yeast microarray experiments the distribution of the number of gene pairs with correlated expression profiles as a function of chromosomal spacing is peaked at short separations and has two superimposed periodicities. The longer periodicity has a spacing of 22 genes (~42 Kb), and the shorter periodicity is 2 genes (~4 Kb). CONCLUSION: The relative positioning of DNA probes on microarray slides and source plates introduces subtle but significant correlations between pairs of genes. Careful consideration of this spatial artifact is important for analysis of microarray expression data. It is particularly relevant to recent microarray analyses that suggest that co-expressed genes cluster along chromosomes or are spaced by multiples of a fixed number of genes along the chromosome

    The tissue microarray data exchange specification: A community-based, open source tool for sharing tissue microarray data

    Get PDF
    BACKGROUND: Tissue Microarrays (TMAs) allow researchers to examine hundreds of small tissue samples on a single glass slide. The information held in a single TMA slide may easily involve Gigabytes of data. To benefit from TMA technology, the scientific community needs an open source TMA data exchange specification that will convey all of the data in a TMA experiment in a format that is understandable to both humans and computers. A data exchange specification for TMAs allows researchers to submit their data to journals and to public data repositories and to share or merge data from different laboratories. In May 2001, the Association of Pathology Informatics (API) hosted the first in a series of four workshops, co-sponsored by the National Cancer Institute, to develop an open, community-supported TMA data exchange specification. METHODS: A draft tissue microarray data exchange specification was developed through workshop meetings. The first workshop confirmed community support for the effort and urged the creation of an open XML-based specification. This was to evolve in steps with approval for each step coming from the stakeholders in the user community during open workshops. By the fourth workshop, held October, 2002, a set of Common Data Elements (CDEs) was established as well as a basic strategy for organizing TMA data in self-describing XML documents. RESULTS: The TMA data exchange specification is a well-formed XML document with four required sections: 1) Header, containing the specification Dublin Core identifiers, 2) Block, describing the paraffin-embedded array of tissues, 3)Slide, describing the glass slides produced from the Block, and 4) Core, containing all data related to the individual tissue samples contained in the array. Eighty CDEs, conforming to the ISO-11179 specification for data elements constitute XML tags used in the TMA data exchange specification. A set of six simple semantic rules describe the complete data exchange specification. Anyone using the data exchange specification can validate their TMA files using a software implementation written in Perl and distributed as a supplemental file with this publication. CONCLUSION: The TMA data exchange specification is now available in a draft form with community-approved Common Data Elements and a community-approved general file format and data structure. The specification can be freely used by the scientific community. Efforts sponsored by the Association for Pathology Informatics to refine the draft TMA data exchange specification are expected to continue for at least two more years. The interested public is invited to participate in these open efforts. Information on future workshops will be posted at (API we site)

    SDRF2GRAPH – a visualization tool of a spreadsheet-based description of experimental processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As larger datasets are produced with the development of genome-scale experimental techniques, it has become essential to explicitly describe the meta-data (information describing the data) generated by an experiment. The experimental process is a part of the meta-data required to interpret the produced data, and SDRF (Sample and Data Relationship Format) supports its description in a spreadsheet or tab-delimited file. This format was primarily developed to describe microarray studies in MAGE-tab, and it is being applied in a broader context in ISA-tab. While the format provides an explicit framework to describe experiments, increase of experimental steps makes it less obvious to understand the content of the SDRF files.</p> <p>Results</p> <p>Here, we describe a new tool, SDRF2GRAPH, for displaying experimental steps described in an SDRF file as an investigation design graph, a directed acyclic graph representing experimental steps. A spreadsheet, in Microsoft Excel for example, which is used to edit and inspect the descriptions, can be directly input via a web-based interface without converting to tab-delimited text. This makes it much easier to organize large contents of SDRF described in multiple spreadsheets.</p> <p>Conclusion</p> <p>SDRF2GRAPH is applicable for a wide range of SDRF files for not only microarray-based analysis but also other genome-scale technologies, such as next generation sequencers. Visualization of the Investigation Design Graph (IDG) structure leads to an easy understanding of the experimental process described in the SDRF files even if the experiment is complicated, and such visualization also encourages the creation of SDRF files by providing prompt visual feedback.</p

    Systems biology via redescription and ontologies (I): finding phase changes with applications to malaria temporal data

    Get PDF
    Biological systems are complex and often composed of many subtly interacting components. Furthermore, such systems evolve through time and, as the underlying biology executes its genetic program, the relationships between components change and undergo dynamic reorganization. Characterizing these relationships precisely is a challenging task, but one that must be undertaken if we are to understand these systems in sufficient detail. One set of tools that may prove useful are the formal principles of model building and checking, which could allow the biologist to frame these inherently temporal questions in a sufficiently rigorous framework. In response to these challenges, GOALIE (Gene ontology algorithmic logic and information extractor) was developed and has been successfully employed in the analysis of high throughput biological data (e.g. time-course gene-expression microarray data and neural spike train recordings). The method has applications to a wide variety of temporal data, indeed any data for which there exist ontological descriptions. This paper describes the algorithms behind GOALIE and its use in the study of the Intraerythrocytic Developmental Cycle (IDC) of Plasmodium falciparum, the parasite responsible for a deadly form of chloroquine resistant malaria. We focus in particular on the problem of finding phase changes, times of reorganization of transcriptional control

    Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

    Get PDF
    Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.This work was supported by the National Institutes of Health National Cancer Institute (grant U54 CA112970 to J.W.G., G.B.M., S.M., and P.T.S.). S.M.H. and S.M. were supported by the UK Medical Research Council (unit program numbers MC_UP_1302/1 and MC_UP_1302/3). S.M. was a recipient of a Royal Society Wolfson Research Merit Award. The MD Anderson Cancer Center RPPA Core Facility is funded by the National Institutes of Health National Cancer Institute (Cancer Center Core Grant CA16672)

    Simple integrative preprocessing preserves what is shared in data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioinformatics data analysis toolbox needs general-purpose, fast and easily interpretable preprocessing tools that perform data integration during exploratory data analysis. Our focus is on vector-valued data sources, each consisting of measurements of the same entity but on different variables, and on tasks where source-specific variation is considered noisy or not interesting. Principal components analysis of all sources combined together is an obvious choice if it is not important to distinguish between data source-specific and shared variation. Canonical Correlation Analysis (CCA) focuses on mutual dependencies and discards source-specific "noise" but it produces a separate set of components for each source.</p> <p>Results</p> <p>It turns out that components given by CCA can be combined easily to produce a linear and hence fast and easily interpretable feature extraction method. The method fuses together several sources, such that the properties they share are preserved. Source-specific variation is discarded as uninteresting. We give the details and implement them in a software tool. The method is demonstrated on gene expression measurements in three case studies: classification of cell cycle regulated genes in yeast, identification of differentially expressed genes in leukemia, and defining stress response in yeast. The software package is available at <url>http://www.cis.hut.fi/projects/mi/software/drCCA/</url>.</p> <p>Conclusion</p> <p>We introduced a method for the task of data fusion for exploratory data analysis, when statistical dependencies between the sources and not within a source are interesting. The method uses canonical correlation analysis in a new way for dimensionality reduction, and inherits its good properties of being simple, fast, and easily interpretable as a linear projection.</p

    Listen to genes : dealing with microarray data in the frequency domain

    Get PDF
    Background: We present a novel and systematic approach to analyze temporal microarray data. The approach includes normalization, clustering and network analysis of genes. Methodology: Genes are normalized using an error model based uniform normalization method aimed at identifying and estimating the sources of variations. The model minimizes the correlation among error terms across replicates. The normalized gene expressions are then clustered in terms of their power spectrum density. The method of complex Granger causality is introduced to reveal interactions between sets of genes. Complex Granger causality along with partial Granger causality is applied in both time and frequency domains to selected as well as all the genes to reveal the interesting networks of interactions. The approach is successfully applied to Arabidopsis leaf microarray data generated from 31,000 genes observed over 22 time points over 22 days. Three circuits: a circadian gene circuit, an ethylene circuit and a new global circuit showing a hierarchical structure to determine the initiators of leaf senescence are analyzed in detail. Conclusions: We use a totally data-driven approach to form biological hypothesis. Clustering using the power-spectrum analysis helps us identify genes of potential interest. Their dynamics can be captured accurately in the time and frequency domain using the methods of complex and partial Granger causality. With the rise in availability of temporal microarray data, such methods can be useful tools in uncovering the hidden biological interactions. We show our method in a step by step manner with help of toy models as well as a real biological dataset. We also analyse three distinct gene circuits of potential interest to Arabidopsis researchers

    Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging Cytometry

    Get PDF
    Progression through the cell division cycle is orchestrated by a complex network of interacting genes and proteins. Some of these proteins are known to fluctuate periodically during the cell cycle, but a systematic study of the fluctuations of a broad sample of cell-cycle proteins has not been made until now. Using time-lapse fluorescence microscopy, we profiled 16 strains of budding yeast, each containing GFP fused to a single gene involved in cell cycle regulation. The dynamics of protein abundance and localization were characterized by extracting the amplitude, period, and other indicators from a series of images. Oscillations of protein abundance could clearly be identified for Cdc15, Clb2, Cln1, Cln2, Mcm1, Net1, Sic1, and Whi5. The period of oscillation of the fluorescently tagged proteins is generally in good agreement with the inter-bud time. The very strong oscillations of Net1 and Mcm1 expression are remarkable since little is known about the temporal expression of these genes. By collecting data from large samples of single cells, we quantified some aspects of cell-to-cell variability due presumably to intrinsic and extrinsic noise affecting the cell cycle

    A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB

    Get PDF
    BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML

    Supervised inference of gene-regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inference of protein interaction networks from various sources of data has become an important topic of both systems and computational biology. Here we present a supervised approach to identification of gene expression regulatory networks.</p> <p>Results</p> <p>The method is based on a kernel approach accompanied with genetic programming. As a data source, the method utilizes gene expression time series for prediction of interactions among regulatory proteins and their target genes. The performance of the method was verified using Saccharomyces cerevisiae cell cycle and DNA/RNA/protein biosynthesis gene expression data. The results were compared with independent data sources. Finally, a prediction of novel interactions within yeast gene expression circuits has been performed.</p> <p>Conclusion</p> <p>Results show that our algorithm gives, in most cases, results identical with the independent experiments, when compared with the YEASTRACT database. In several cases our algorithm gives predictions of novel interactions which have not been reported.</p
    corecore